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a b s t r a c t

Having acquired near infrared (NIR) hyperspectral images of intact pork loin samples through an NIR
hyperspectral imaging system, the efficiency of a variety of image processing techniques including
texture pattern analysis techniques were applied to process hyperspectral images so as to determine the
intramuscular fat (IMF) content non-destructively. After the segmentation of region of interest (ROI), the
raw spectral, texture-based spectral and textural characteristics of pork images were extracted by
spectral averaging and pattern recognition techniques namely Gabor filter and improved gray level co-
occurrence matrix (GLCM), respectively. First derivatives of the non-filtered and the Gabor filtered
spectra were also investigated. Full waveband partial least squares regression (PLSR) was employed to
determine the optimal parameters of Gabor filter and GLCM, and to select optimal wavelengths for IMF
prediction. A stepwise procedure was applied to the optimal wavelengths to further optimize them to
key wavelengths. Multiple linear regression (MLR) models were built based on the key wavelengths.
Mean spectra and the Gabor filtered spectra outperformed GLCM. The best result, represented by
correlation coefficients of calibration (Rc), cross validation (Rcv) and prediction (Rp) of 0.89, 0.89, and
0.86, respectively, was achieved using the first derivative of Gabor filtered spectra at 1193 and 1217 nm.
To visualize the IMF content in pork, the distribution maps of IMF content in pork were drawn using
a mean spectra-based MLR model. These promising results highlight the great potential of NIR
hyperspectral imaging for non-destructive prediction of IMF content of intact pork.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Intramuscular fat (IMF) refers to the fat deposited inside a piece
of muscle, so accordingly intramuscular fat content is defined as
the mass of IMF, including the visible fat and the non-visible fat in
the muscle cell. IMF content influences the cooking quality of pork
(flavor, juiciness, etc.), eating satisfaction of consumers, and even
health-related issues. Thus, different levels of IMF content can lead
to different levels of consumer acceptance [1,2]. Non-invasive and
rapid determination of IMF content of pork chops would allow
commercial cuts to be classified, screened, and assigned to
a proper retail category according to different market targets,
thereby enhancing their market allocation and reducing handling

costs. At present, the assessment of IMF content of pork involves
solvent-based lipid extraction, which is a time consuming, labor
intensive and environmentally harmful process. Since chemical
extraction-based IMF prediction is not suitable for fast and non-
destructive assessment of IMF content of pork, random sampling is
typically used in the evaluation of IMF content of pork products. As
this leads to non-optimal grading of pork cuts, it would be
beneficial to the pork industry to develop a non-destructive,
real-time, rapid, and accurate method for predicting IMF content
of pork.

Studies have been conducted to evaluate IMF content of pork
meat through spectroscopic means [3–7]. Savenije et al. [6]
applied a near infrared (NIR) reflectance spectrophotometer to
the determination of IMF content of meat obtained from three
contrasting breeds. The second derivative of the reflected spectra
was used to build prediction models. Correlation coefficients of
calibration (Rc) between the measured and predicted IMF contents
ranged from 0.70 to 0.86, while correlation coefficients of valida-
tion (Rv) ranged from 0.63 to 0.76. Prevolnik et al. [4] and Barlocco
et al. [5] found that estimate of IMF levels by NIR spectroscopy
were more accurate when derived from minced pork muscle other
than intact pork muscle, highlighting the limitations of spectroscopic
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technique for determination of IMF content of pork. Given the
confined detected area of the spectroscopic system, and the hetero-
geneous distribution of fat in pork muscle, only limited information
could be obtained. Therefore, to obtain sufficient data from pork
samples either destructive homogenization of samples or repetition
of spectroscopy-based evaluation is required.

In the face of these limitations, the emerging technique of
hyperspectral imaging was exploited to inspect pork quality [8–12].
By integrating both conventional spectroscopy techniques with
imaging techniques and enlarging the detection field, hyperspectral
imaging overcomes the limitations of spectroscopy, making it
possible to identify the spectral details of different chemical compo-
nents at specified locations in a product [13,14]. From the resultant
data cube (hypercube), image parameters or spectra can be extracted
and analyzed in order to determine the chemical attributes or
physical properties of the tested object. Moreover, the hypercube
can be stored for further analysis. In addition, no sample preparation
is needed to apply hyperspectral imaging. Considering the great
potential of this technology, there has been mounting interest in
applying hyperspectral imaging to pork quality control [15].

Qiao et al. [9] introduced visible (VIS)/near-infrared (NIR)
hyperspectral imaging to classify pork quality and assess pork
marbling objectively. Image processing approach namely gray
level co-occurrence matrix (GLCM) was adopted to grade pork
samples into different meat quality categories classification results
of 75–80% were achieved. Liu et al. [10] developed a Gabor filter-
based hyperspectral imaging system to grade pork samples into
the same meat quality categories. The work obtained a classifica-
tion accuracy of 8471%, which improved the earlier result of Qiao
et al. [9] by 4%. This implied that effective pattern recognition
techniques would enhance the ability of hyperspectral imaging for
assessment of pork quality. Promising results in these studies
again emphasized the capacity of hyperspectral imaging as the
basis for prediction of pork quality attributes.

The functional bonds of C–H and O–H in fat are closely linked
to some frequencies in the NIR region, accounting for why the use
of NIR hyeprspectral imaging for IMF content prediction might
produce better results than hyeprspectral imaging in the visible
(VIS) region. Kobayashi et al. [16] and Wold et al. [17] successfully
applied NIR hyperspectral imaging for control of fat content in
beef. However, hyperspectral imaging of pork presents a greater
challenge, compared to beef, due to the lower contrast between fat
and lean in pork and the spectral overlaps in the NIR region
exhibited by the main constituents of meat (lipid, water, and
protein) [19,20]. Nonetheless, Liu et al. [18] reported the use of the
hyperspectral imaging technique to predict the IMF content of
pork. The reflected images in a specific wavelength interval were
accumulated to enhance the contrast between the fat and the non-
fat areas. A feature detection method namely the wide line
detector then served to detect fat flecks of pork, yielding a
prediction accuracy of 0.91 through a linear regression modeling.
While this study indicated the possibility of rapid assessment of
the intramuscular fat content of pork using NIR hyperspectral
imaging, the authors mentioned the need for more sample
measurements and wavelength optimization.

The aim of the present study was to investigate the potential of
NIR hyperspectral imaging (900–1700 nm) for quantification of
IMF content in pork. For this purpose, normal averaging of spectra
and two texture pattern techniques namely Gabor filter and
improved GLCM were investigated in terms of their ability to
draw useful information from NIR spectral images. Partial least
squares regression (PLSR) in the whole wave range was used to
select feature wavelengths, after which a stepwise procedure was
used to further reduce the dimension of optimal wavelengths. The
distribution of IMF content of pork was visualized using the built
optimal multiple linear regression model.

2. Experimental section

2.1. Sample collection and determination of IMF content

Pork samples from longissimus thoracis muscle were collected
from the carcasses of 83 pigs which were raised on a local farm. No
differing treatment was applied to the animals. To increase the
variability in IMF content in the longissimus muscle, carcasses
showing large differences in back fat thickness between the 3rd/
4th last ribs were selected for dissection. At 24 h post-mortem, thin
pork slices at the 3rd/4th last thoracic rib of the longissimus dorsi
(LD) were collected for determination of IMF content. Concurrently,
loin chops with 2–2.5 cm in thickness were dissected from the same
anatomical location (the 3rd/4th last thoracic rib), individually
wrapped in vacuum packs, and transported to the Hyperspectral
Imaging Laboratory, McGill University, Montreal, QC, Canada for
image acquisition. The shipping was conducted at 4 1C.

Peripheral fat and surrounding muscle were removed from the
thin pork slices. The remaining trimmed muscles were ground.
The fresh weight based IMF content of the minced fresh pork was
measured using ethanol and dichloromethane-based Soxtec
extraction [21]. These IMF contents served as reference values
for corresponding loin samples.

2.2. NIR hyperspectral imaging system

An NIR hyperspectral imaging system (Fig. 1) was used to
capture NIR images of pork loins. The system consisted of an InGaAs
camera (XenICs, Belgium), a spectrograph (Headwall photonics, USA,
900–1700 nm), a conveyer (Donner 2200 series, Donner Mfg. Corp.,
USA), a real-time control motor (MDIP22314, Intelligent motion
system Inc., USA), two 50W tungsten halogen lamps (vertically
25 cm, and horizontally 8 cm away from the samples), a supporting
frame, and a computer. Incident illumination was at an angle of 451
to the sample. The distance between lens and the sample was
40 cm. The directions of the lamps were set up to make sure that the
light sources are enabled in every part of the sample. Software for
data acquisition and conveyer control was installed on the computer
(Hyperspec, Headwall Photonics Inc., USA). The system was run at a
room temperature (20–25 1C).

The line-scanning pushbroom system employed was operated in
a reflectance mode. With the conveyer moving at a predefined speed,
the sample was scanned line by line and the reflected light from
samples was quantified at wavelengths ranging from 900 to 1700 nm
by the spectrograph. A three-dimensional hypercube was formed by
combining spatial information from the InGaAs camera and spectral
information from the spectrograph. The spectral resolution for the
system was 4.8 nm while the spatial resolution was roughly 0.6 mm.
The spectral dimension covered 167 bands. The number of pixels
covered by one spatial dimension was determined by the morpho-
logical size of the detected object. The generated hypercube was
saved in a band-interleaved-by-line (BIL) format, from which NIR
images and spectra for each pixel could easily be extracted.

2.3. Image acquisition and calibration

No sample preparation was needed before image acquisition.
Each sample was taken out of the refrigerator (4 1C), scanned for
few seconds to collect images, and put back to the refrigerator
right after the image collection. Considering the distance between
light source and the sample, and the speed of image acquisition,
the temperature of the sample was assumed to remain nearly at
4 1C and no significant changes occurred to the sample during
imaging. Prior to the collection of hyperspectral images from the
2–2.5 cm thick loin chops, dark and white reference images were
captured to correct error caused by dark current of the system and
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to transform the reflected light intensity to reflectance. The dark
image (D, with reflectance �0%) was obtained by covering the lens
with an opaque cap. The white reference (W, with reflectance
�99%) was obtained by adopting a ceramic tile as photographed
object. Original NIR images (N0) of samples were collected by
placing sample on a dark board whose reflectance was close to 0%.
Image acquisition of each sample took approximately 4 s. Cor-
rected NIR images (N) were obtained by algebraic calculus (Eq. (1))
of the light intensities of each pixel {i, j} in dark (D(i, j)), white (W
(i, j)) and original NIR images (N0(i, j)). The reflectance of pixels in
the calibrated NIR images ranges from 0 to 1. Subsequent image
and data analysis (Fig. 1) were conducted using the corrected
hypercube.

Nði; jÞ ¼N0ði; jÞ�Dði; jÞ
Wði; jÞ�Dði; jÞ ð1Þ

2.4. Image processing

The spectral averaging-based and pattern technique-assisted
image processing and subsequent multivariate statistical analysis
are summarized in Fig. 1. Given the excessive noise of images at
900–935 nm and 1655–1700 nm, only those images obtained over
the range of 940–1650 nm were used for image analysis, starting
with image preprocessing. All operations of image processing and
multivariate statistical analysis in this study were performed using
MATLAB 7.3.0 (The MathWorks, Inc., Mass., USA).

2.4.1. Image preprocessing
Regions of interest (ROI) were segmented, from which the

spectral and texture features were extracted. ROI Segmentation
with the aim of isolating the targeted lean and IMF portion of the

Fig. 1. Flow chart of data acquisition and analysis.
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meat from other portions is an important step in image proces-
sing, as the selected ROI will affect all further analysis. The
peripheral fat, surrounding muscle, shadows and other back-
grounds were removed and replaced by a homogenous black
background. ROI segmentation in this study was conducted
according to the method presented in Liu et al. [22]. The threshold
value was automatically set according to the mean and standard
deviation of reflectance of each image.

2.4.2. Extraction of spectral feature
The mean spectrum of non-filtered ROI (MS) was extracted

after image preprocessing. MS of each sample was a 1�149 (the
wave range/the spectral resolution of the systemþ1) vector.
Average spectra of the two sides of each pork sample were used
as final spectral features. In general, there were over 40,000 pixels
in the ROI obtained by hyperspectral imaging, hence the error
introduced by subjective selection of ROI was reduced comparing
to spectroscopy. To raise the ratio of signal to noise, the first
derivative (Eq. (2)) was applied to the obtained non-filtered mean
spectra. The resulted first derivative of mean spectra (DMS) was
used for data analysis as well as MS. DMS of each pork sample was
a 1�148 vector (the wave range/the spectral resolution of the
system).

Di ¼
MSiþ1�MSi
λiþ1�λi

ð2Þ

where i represents the number of wavelengths, i¼ 1, 2, 3, … 148.
Di is the first differential of the mean spectrum at ith wavelength.
λi is the ith wavelength, with an interval of 4.8 nm between λi and
λiþ1. MSiþ1 and MSi are the value of spectral response at the (iþ1)
th and ith wavelength, respectively.

2.4.3. Extraction of texture spectrum by Gabor filter
Proposed as an analogue of human vision [10,23], texture

pattern technique Gabor filter served to extract texture features
from NIR images. The two-dimensional Gabor filter is a transfor-
mation of elliptic Gaussian and sinusoidal waves, which are
applied on all receptive fields in the image. Gabor filter is capable
of extracting the important spatial characteristics including spatial
localization and spatial frequency from images. Considering IMF as
spatial characteristics in pork images, an isotropic Gabor filter
(GF1, Eq. (3)) and an oriented Gabor filter (GF2, Eq. (4)) were used
to process pork images at wavelengths ranging from 940 to
1650 nm [24].

GF1ðx; y; f ; sÞ ¼ 1
2πs2

exp �x2þy2

2s2

� �
cos ½2πf ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
Þ� ð3Þ

GF2ðx; y; f ; s;θÞ ¼ 1
2πs2

exp �x2þy2

2s2

� �
cos ½2πf ðx cos θþy sin θÞ�

ð4Þ
where (x, y) are the coordinates of a specified pixel in a given NIR
image, f represents the frequency of the sinusoidal wave, s is the
standard deviation of the Gaussian function, and θ is a vector
which controls the orientation of the filter (θ¼01, 451, 901, 1351).
Since GF1 is an isotropic function, θ was not considered as
a parameter for GF1. After filtering, the mean spectral response
of the Gabor filtered ROI was obtained. To reduce the influence of
heterogeneity in the pork sample, the average spectrum from two
surfaces of each sample was obtained and used for subsequent
analysis. Mean spectra from GF1 and GF2 processed images were
denoted as MG1 and MG2, respectively. The first derivatives of
MG1 and MG2 were calculated according to Eq. (2) and denoted as
DMG1 and DMG2, respectively. DMG stands for the first deriva-
tives of both types of Gabor filtered spectra.

2.4.4. Extraction of texture features by improved GLCM
Another texture pattern analysis technique termed gray-level

co-occurrence matrix (GLCM) was investigated for processing of
hyperspectral images. GLCM provides information about how
often the pixel intensities occur between two pixels that are
distributed by a specific distance and direction. Features derived
by GLCM have been widely used in texture analysis for food
quality and safety control [25–27]. In applying GLCM, the sub-
jective selection of a regular shape (e.g. a circle area) is usually
used to select the appropriate ROI [9,26]. However, as bias would
be introduced by manual interference, especially for heteroge-
neous objects such as meat products. In the present, an advanced
GLCM was applied to the full irregularly shaped ROI of pork loin to
avoid the effect of subjective ROI selection.

To calculate texture features, a multi-scale GLCM matrix was
derived from each image. For instance, Fig. 2(a) illustrates how an
8-level GLCM matrix was calculated from a 6�5 matrix (i.e. 6�5
image). As the shadow elements shown in Fig. 2(a), with an offset
direction of east (01) and an offset distance of 1.0 between two
pixels, two instances of two neighboring pixels having values of
1 and 3 occurred. Hence, the element {1, 3} in the GLCM contains
the value 2. The size of the generated GLCMmatrix depends on the
number of gray scales considered. Usually, eight scales were
considered, resulting in an 8� 8 square GLCM matrix.

Eight scale levels, four offset directions (Fig. 2(b), 01, 451, 901,
1351), and 11 offset distances between 1 and 3–30 pixels, with
a stepsize of three pixels were tried in generating the GLCM
matrices. The minimum and the maximum intensities of the input
image delimited the scale, which was divided into eight equal
levels. For each image, 52 (4 directions � 13 steps¼52) different
matrices were generated. The image texture features (GI) included
four measurements calculated from obtained GLCM matrix
(Eqs. (5)–(8)): contrast (GIt), correlation (GIn), angular second
moment (ASM, GIa), and homogeneity (GIh)), respectively.

Contrast ¼∑
i;j
ði� jÞ2MD;θði; jÞ ð5Þ

Correlation¼∑i;jðijÞMD;θði; jÞ�μiμj

sisj
ð6Þ

Fig. 2. Principle of GLCM matrix. (a) Form of 8-level GLCM matrix and
(b) distibution of pixel pair.
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ASM¼∑
i;j
½MD;θði; jÞ�2 ð7Þ

Homogeneity¼∑
i;j

MD;θði; jÞ
1þði� jÞ2

ð8Þ

where (i, j) is the coordination of the pixel of interest, D is the given
distance between two pixels, θ is the offset direction of the pair of
pixels over an image (θ¼ 01, 451, 901, 1351), MD;θ is the obtained
GLCM matrix, MD;θði; jÞ is the value in element {i, j} of MD;θ , (μi,μj)
are the means of MD;θði; jÞ in the row and column directions, and
(si,sj) are the standard deviations ofMD;θði; jÞ in the row and column
directions. As a result, 208 (52 � 4¼208) plots with different
parameters (θ, D, measurement) were developed from each image.
The four measurements of GLCM each served as a type of image
texture feature index in the estimation of IMF content of pork.

2.5. Multivariate data analysis

Partial linear square regression (PLSR) and a stepwise procedure
were employed in building calibration models, which served in

determining optimal parameters for GF and GLCM and key wave-
lengths for modeling. PLSR method is widely used to reduce the
dimensionality of predictor variables and random noise, and has
proved to be efficient [7]. In practice, the essential step of PLSR
analysis is selecting the number of the main PLS principal compo-
nents (PLS-PC) which explain the maximum fundamental relations
between predict and response variables. After quantification of PLS-
PC, the PLSR model is built. The parameters of GF (f, s, θ) and GLCM
(D, θ, measurement), which provided best prediction results in PLSR
models, were used as the optimal parameters. The corresponding
regression coefficient was used to select optimal wavelengths.

In this study, features at all wavebands (940–1650 nm) were used
for the PLSR analysis. The total 83 samples were divided into two sets,
including calibration sets (56 samples) and prediction sets (27
samples). PLSR models with different features were built using
calibration sets. Numbers of PLS-PC were determined when the root
mean squared error of calibration (RMSEC) reached the minimum
value. The robustness of the calibration models generated was tested
by leave-one-out cross validation. Considering the predictive ability of
models for real samples as well, data in the prediction sets were input

Fig. 3. Construction of hypercube and segmentation of ROI. (a) Raw hypercue, hyperspectral images, and spectra of black board, visible IMF, surrounding fat, and lean, (b) ROI
and spectrum of homogeneous background pixel.
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into calibration models for testing. After the numbers of PLS-PC were
determined, values of GF-based or GLCM-based models that produced
best results were selected along with corresponding optimal para-
meters of feature extraction. The efficiency of PLSR models was
assessed according to following statistical values of calibration sets,
cross validation sets, and prediction sets: the correlation coefficient of
calibration (Rc), cross validation (Rcv), and prediction (Rp), the root
mean square error of calibration (RMSEC), cross validation (RMSECV),
and prediction (RMSEP). Models with greater Rc, Rcv, and Rp values,
and lower RMSEC, RMSECV, and RMSEP values were preferred.

The most valuable wavelengths for each feature were selected
from peaks in their individual plot of regression coefficients.

A stepwise procedure was employed to further narrow down the
key wavelengths. The variables at selected key wavelengths were
input into an MLR model (Eq. (9)), and their performance in
calibration, cross validation, and prediction was compared. The
most practical model was selected for prediction of IMF content in
intact pork.

Ym¼ b0þ ∑
i ¼ n

i ¼ 1
Xi � bi ð9Þ

where b0 and bi are regression coefficients, Ym is the measured IMF
content of pork samples,Xi is the variable at the ith wavelength,
n represents the number of key wavelengths used, i.e. variables. The

Fig. 4. The raw ROI, GF1, GF2, corresponding Gabor filtered ROI, and generated typical spectral responses.
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multiple linear regression model was assessed by statistical values of
Rc, Rcv, Rp, RMSEC, RMSECV, and RMSEP. Models with greater Rc, Rcv,
and Rp values, lower RMSEC, RMSECV, and RMSEP values, and smaller
differences between RMSEC, RMSECV, and RMSEP were preferred.

2.6. Visualization of IMF content in pork by distribution map

Since pork is a heterogeneous material, the visualization of IMF
distribution would allow a better interpretation of the IMF content in
pork. One advantage of hyperspectral imaging is that it provides
spectral information of each pixel in pork image, whichmeans the IMF
content of each pixel can be predicted by inputting the spectrum into
a prediction model. Furthermore, the spectral information from
hyperspectral imaging includes both external information regarding
the objects of interest, as well as internal information, making
hyperspectral imaging more suitable for prediction of IMF content,
as IMF is distributed not just on the surface of pork, but throughout
the whole pork sample. Hence, application of hyperspectral imaging
has the potential to assist in the visualization of IMF content in intact
pork cuts. Towards this purpose, reference data of IMF content of each
pixel would be required to build an accurate prediction model.
However, it is not possible to measure the IMF content of a pixel. To
overcome this challenge, the best and simplest MLR model that was
constructed based onmean spectrum or image parameters in previous
step was selected. The MLRmodel was applied to the adopted spectral
or image features of each pixel to predict the IMF content of each pixel
in the pork image. By showing the pixel-based IMF content, the
distribution map of IMF content in pork was then generated. This
would help the understanding of IMF distribution in pork and also
assist in conducting further detailed study at the pixel level.

3. Results and discussion

3.1. IMF content and ROI of hyperspectral images

A total of 83 pork loin chops were investigated in this study.
Wide variations in IMF contents were observed for the total pork
cutlets (n¼83), calibration set (n¼56), and prediction dataset

(n¼27), with range of 0.51–5.8, 0.51–5.8, and 0.58–3.62, respec-
tively. The range of prediction was covered by calibration set and
the standard deviation (STD) of all three datasets was in the same
level, ensuring a stable and reliable calibration model.

The conformation of hypercube (940–1650 nm) generated by
the hyperspectral imaging system and corresponding ROI segmen-
tation are illustrated in Fig. 3(a). A typical NIR image and the
spectra of a surrounding fat pixel, an IMF pixel, a lean pixel, and
a black board pixel were extracted from a hypercube. The reflected
spectra of fat and lean showed different scales of intensity but
similar features: reflected peak around 1100, 1300, and 1650 nm,
and valley around 1250 and 1450 nm. The main constituents of fat
and lean include lipid and water, whose peak absorption bands
show a great deal of overlapping [28]. Besides, each hyperspectral
image was composed of not only the external information of
sample, but also the internal information acquired by penetration
of NIR spectra into the sample. Since pork is a heterogeneous
object, the spectrum from one pixel may contain information of
lean and fat in different layers simultaneously. Pork was cut across
the grain of muscle cells. Each layer included information of
numerous muscle cells. This would explain the similarity in
spectral characteristics between lean and fat. The reflectance of
a black board pixel was near but not absolutely zero. To screen the
board and surrounding fat from the image being analyzed, auto-
matically segmented masks were applied to each NIR image across
the waveband of 940–1650 nm, such that reflected values for non-
ROI areas were all set to zero. The resultant spectrum of back-
ground pixel is absolutely zero in Fig. 3(b).

3.2. Spectra from raw ROI and Gabor filtered ROI and the first
derivative of spectra

The raw ROI and the corresponding Gabor filtered ROI (f¼ 0.1,
s¼ 10), and typical typical mean spectra of raw ROI (MS) and
Gabor filtered ROI (MG1 and MG2), and the corresponding
responses of first derivative of spectra (DMS, DMG1 and DMG2
(θ¼ 01)) are illustrated in Fig. 4. ROI in each image was either
filtered through the isotropic GF1 or the four orientation GF2 (θ¼

Fig. 5. Formation of GLCM matrix and corresponding texture curves.
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01, 451, 901, 1351). The mean spectra of raw ROI and filtered ROI
showed a similar pattern but different magnitudes. All mean
spectra showed similar features: a steep peak around 1087 nm,
another peak around 1279 nm, and a valley around 1207 nm. The
response of first derivative of mean spectra showed similar
features: a gradual peak around 1217 nm, and a steep valley
around 1130 nm. MS, DMS, MG1, MG2, DMG1, and DMG2 spectra
of samples were used for multivariate data analysis.

3.3. Texture curve by GLCM

A typical 8-level GLCM matrix of a ROI was formed and the
GLCM derived measurements of contrast, correlation, ASM, and
homogeneity (GIt, GIn, GIa, and GIh) were obtained as illustrated in
Fig. 5, where offset distance D is 9, and orientation θ is 01. The
minimum reflectance and the maximum reflectance of each ROI
were chosen as the lowest and highest levels of GLCM matrix. The
range was divided into eight parts, with each portion being
regarded as a level. GLCM matrix at each wavelength resulted in
a set of four measurements. As depicted in Fig. 5, a GLCM index
(GI) at continuous wavelengths could be expressed as a curve
across 940–1650 nm. Typical curves for GIt and GIn showed a peak
around 1100 nm, similar to features of spectra of MS and MG. In
contrast, GIh and GIa showed a valley at 1100 nm, indicating that
images at this wavelength were less orderly than images at other
wavelengths. The highest value of GIt at 1100 nm implied a large
local intensity variation in the NIR image at 1100 nm. Other peaks
around 1300 and 1400 nm were apparent for GIt and GIn (Fig. 5).
Different measurements with different directions and orientations
were tried as variables of multivariate data analysis.

3.4. Multivariate data analysis

Features from ROI in calibration set served as input to Eq. (9)
and regression matrices (B) were obtained. Models were cross
validated and tested by independent samples in the prediction set.
The results of calibration, cross validation and prediction of all

features are listed in Table 1. The optimal parameters of Gabor
filters and GLCM were selected based on the performance of PLSR
models. When the algorithm-based PLSR models performed the
best, the corresponding parameter sets were used as the optimal
parameters for the algorithms: s¼ 10, f¼ 0.1 for GF1, s¼ 10, f¼
0.1, θ¼ 01 for GF2, D¼9, θ¼ 01, measurement¼contrast for GLCM.
The raw mean spectra and Gabor filtered spectra showed high
similarity in PLSR analysis, while MG2 performed slightly better
than the other features. The prediction of IMF content by GI was
not as strong as mean spectra of raw ROI and Gabor filtered ROI or
the first derivative of mean spectra.

Table 1 shows the regression parameters for models used in
selection of optimal wavelengths related to IMF content of pork.
Wavelengths corresponding to the first few peak regression
coefficients were selected as potential variables, as listed in
Table 2. The optimal wavelengths for all the mean spectra were
986, 1044, 1116, and 1207 nm, while the wavelengths of all the first
derivative of mean spectra were 1025, 1193, and 1217 nm. Wave-
lengths of 1044 and 1140 nm were used for GLCM as well as most
types of mean spectra. Wavelengths around 960 and 1200 nm
were both used as optimal wavelengths for all types of mean
spectra and first derivative of mean spectra. Those two wavebands
are mainly related to the stretching or deformation vibration of
C–H and O–H bonds [28]. The third and second overtones of C–H
bonds, which are abundant in fatty acids, resulted absorption

Table 1
Results of full waveband-based PLSR models using spectral and texture features.

Table 2
Optimal wavelengths selected from PLSR models of spectral and texture features.

Features Optimal wavelengths (nm)

MS 958, 986, 1044, 1116, 1135, 1207, 1279, 1457
DMS 962, 1025, 1116, 1140, 1193, 1217, 1318, 1375
MG1 953, 986, 1044, 1116, 1135, 1207, 1270
DMG1 1025, 1121, 1150, 1193, 1217, 1375
MG2 958, 986, 1044, 1116, 1140, 1207, 1279
DMG2 962, 1025, 1121, 1150, 1193, 1217, 1318, 1375
GIt 1044, 1140, 1174, 1308, 1400
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peaks around 930 and 1220 nm [20,28,29]. The frequency around
960 nm, which was derived by stretching vibration of O–H bonds,
would be another affect that the band was characterized as an
optimal wavelength for all spectral features [20,29,30].

To further lessen the influence of water and lean, a stepwise
regression procedure was adopted to simplify the variables at
selected wavelengths (Table 2) and further optimize effective
wavelengths. The resulting optimal wavelengths, regression co-
efficients, and results of MLR based on stepwise-selected key

wavelengths are listed in Table 3. Only two key wavelengths were
selected for almost all of the features except DMS, such that the
dimension of hyperspectral data was much reduced in comparison
to full waveband-based models. Few wavelengths would help the
development of an online determination system for IMF content in
intact pork. Wavelengths around 1200 nm were adopted by most
features except GIt. The rare involvement of spectral feature may
cause the outline of 1200 nm for texture feature GIt, as 1200 nm is
closely related to reflected spectra of fat. A limited number of

Table 3
Results of MLR models of spectral and texture features.

Features Key wavelengths (nm) Regression coefficient Calibration Cross validation Prediction

b0 bi Rc RMSEC Rcv RMSECV Rp RMSEP

MS 1207, 1279 0.408 �84.682, 79.259 0.87 0.52 0.86 0.53 0.85 0.55
DMS 1193, 1217, 1375 �0.063 �405.682, 274.427, �144.927 0.88 0.49 0.88 0.50 0.83 0.58
MG1 1207, 1270 0.538 �3030.206, 2740.172 0.87 0.50 0.86 0.51 0.85 0.53
DMG1 1193, 1217 �0.350 �22904.719, 38033.205 0.89 0.44 0.89 0.44 0.86 0.51
MG2 1207, 1279 0.414 �1210.504, 1125.226 0.87 0.51 0.86 0.51 0.85 0.53
DMG2 1193, 1217 0.376 �6034.862, 5736.390 0.88 0.49 0.88 0.49 0.85 0.52
GIt 1140, 1400 0.787 2.779, �2.998 0.82 0.64 0.81 0.65 0.78 0.76

Fig. 6. Visualization of distribution map and the prediction of IMF content of two pork samples.
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precise wavelengths would help the development of an effective
online determination system for IMF content in intact pork. The
performance of key wavelengths-based MLR of MS, DMS, MG, and
DMG was comparable to the performance of full waveband-based
PLSR. The DMG1 produced the best result, with Rc of 0.89, Rcv of
0.89, and Rp of 0.86, using feature DMG1 at 1193 and 1217 nm. The
performance of GIt was not as good as the one of other features.
However, the MLR model of GIt based on key wavelengths
outperformed the full waveband-based PLSR model. The further
reduction of noise by stepwise analysis may help in data analysis.
In this study, a raw mean spectra-based MLR model produced Rc
of 0.87, Rcv of 0.86, and Rp of 0.85, using spectra at 1207 and
1279 nm. The prediction results of the raw mean spectra-based MLR
model showed that IMF content of both calibration and prediction
sets was well predicted. While much fewer wavelengths and less
data analysis was involved, these results are comparable to the result
of Rc¼0.88 and Rp¼0.91 that was reported by Liu et al. [18].
Considering the complexity of application in practice, mean spectra
of raw ROI are suggested as the processing technique for IMF content
prediction using hyperspectral imaging.

3.5. Visualization of IMF content by distribution map

The MLR model derived from raw mean spectra was used to
visualize the distribution of IMF content in pork, by generating
both distribution maps of IMF content and the estimated IMF
content of pork (Fig. 6). For spectrum of each pixel within
a selected ROI, only reflectance at 1207 and 1279 nm was input
into MLR model to calculate IMF content of this pixel, i.e. only
images at 1207 and 1279 nm were needed for one pork cut. IMF
contents of all the pixels inside the ROI yield the distribution map
of IMF content. Therefore, the loin portion inside the ROI would
affect the profile of the distribution map. Distribution images of
two surfaces of one sample were used to generate the predicted
IMF content of the sample. Fig. 6 also shows maps of two surfaces
of two samples with different measured IMF contents. The ROI of
each surface corresponds to one map, showing how IMF content is
distributed within the ROI, and in particular, how IMF contents
vary drastically between different areas within the same image. In
addition, large variation is observed between distribution maps of
both sides of a single same sample. The total IMF content of each
side (ROI) was generated by averaging the IMF contents of all the
pixels within the relative distribution map. The mean of IMF
contents of two sides of one sample was used as the predicted
IMF content from distribution maps of the sample. The compar-
ison of IMF content of two samples calculated from the raw mean
spectrum of ROI, distribution map, and referenced IMF content are
depicted in Fig. 6. The error between IMF content from maps and
measured values appeared to be slightly larger than the one
between IMF content from raw mean spectra and measured
values. The prediction model for mapping was built using IMF
content measured from the intact pork sample instead of a pixel.
Utilization of referenced IMF content from several small portions
of the intact pork sample may help to build a more accurate model
and therefore enhance the prediction accuracy of the distribution
map of IMF content.

4. Conclusions

This study investigated the potential of NIR hyperspectral
imaging for non-destructive, fast, and objective assessment of
IMF content in intact pork. To mine features from numerous data
of spectral images, pattern analysis techniques, i.e. the Gabor filter
or the GLCM, were applied. Conventional feature extraction
methods, including averaging of spectra and first derivative, were

applied as well. Data processing procedure combined by PLSR,
stepwise procedure and MLR were used to select effective key
wavelengths and establish MLR models. The first derivative of
isotropic Gabor filtered mean spectra at 1193 and 1217 nm
produced the best result of Rc¼0.89, Rcv¼0.89, and Rp¼0.86.
GLCM does not appear to be as effective as Gabor filter and
spectral averaging. Considering the feasibility of implementation
of such procedures, raw mean spectra are suggested as the most
practical feature for prediction of IMF content of intact pork, with
little decline in accuracy over the best result by Gabor filter. The
wavelengths 1207 nm and 1279 nm were selected as key wave-
lengths for mean spectra, producing result of Rc¼0.87, Rcv¼0.86,
and Rp¼0.85. Distribution map of IMF content using the mean
spectra-based MLR model indicated a great potential for detailed
IMF inspection in the pork industry.

These promising results demonstrated the great potential of an
NIR hyperspectral imaging technique in helping to identify the key
wavelengths for IMF content quantification, allowing implementa-
tion of a quality assessment component in online inspection
systems for intact pork.
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